Note

INDENTIFICATION OF THE CHROMIUM SALT OF STEARIC ACID

J.A. WOOD and A.B. SEDDON

Department of Chemical Sciences, The Polytechnic, Huddersfield HD1 3DH (Gt. Britain) (Received 5 November 1980)

It has been assumed [1—5] that the reaction between sodium stearate and a chromium(III) salt leads to the formation of chromium(III)tristearate (CrSt₃). Our experience has shown that the product from this reaction invariably has a chromium content less than the theoretical value (e.g. experiment 5.2%; theory 5.76%) and published data confirm this [1,3]. Extraction of this reaction product with ethanol causes the Cr content to increase from 5.2%, through 5.76% to a value closer to that for mono-hydroxy substituted distearate (CrSt₂OH) and the extract is found to contain stearic acid (HSt). This suggests that the original reaction product is either

- (i) impure CrSt₃ in which one of the stearate chains is weakly held and ethanol extraction replaces this chain by an —OH group after removing the impurity (HSt), or
- (ii) a mixture of substituted stearates [CrSt₂OH and possibly CrSt(OH)₂] and stearic acid, and extraction with ethanol simply removes the acid from admixture.

Thermogravimetric evidence supports the latter.

EXPERIMENTAL

Materials

The chromium salt was prepared by adding a 1.5% (w/w) aqueous sodium stearate solution and a 1% aqueous chromic potassium sulphate (BDH,AR) solution simultaneously to a third vessel containing water, with vigorous stirring of the mixture maintained at $45 \pm 5^{\circ}$ C. The precipitate was filtered, washed with water (8 dm³) and dried in a vacuum desiccator over phosphorus pentoxide at 50° C. This will be referred to as the metathetic product.

The extraction of this product was performed at room temperature by irradiating a 1.5% (w/w) mixture of metathetic product and ethanol in an ultrasonic bath for 20 min, decanting the supernatant liquid and repeating once. After filtration the product was dried in a vacuum desiccator at 50° C. This will be referred to as the extracted product.

Chemical analysis

The chromium contents of these products were determined by ignition, in a platinum crucible, at 700°C to constant weight, followed by fusion with

0040-6031/81/0000-0000/\$02.50 @1981 Elsevier Scientific Publishing Company

sodium carbonate, acidification with sulphuric acid, addition of excess ferrous ammonium sulphate and back titration with fresh potassium permanganate.

Apparatus

A Stanton-Redcroft TG 750 thermobalance and Pt crucibles were used. Two mg samples were subjected to a heating rate of 20° C min⁻¹ under a dynamic atmosphere of dried, white spot N₂ at a flow rate of 25 cm³ min⁻¹.

RESULTS

Chemical analysis

From Table 1 it would appear that the extracted product is predominantly $CrSt_2(OH)$ with some $CrSt(OH)_2$. The presence of stearic acid was disproved by the absence of a 1705 cm⁻¹ peak in the IR spectrum.

Thermal analysis

The TG and DTG curves for the metathetic product are shown in Fig. 1(a). Figure 1(b) shows the results for a mixture of extracted product and stearic acid, prepared so as to have the same % chromium content as the metathetic product. Percent weight losses for these two samples over four temperature ranges are compared in Table 2.

TABLE 1 Analysis of products

Product	Chromium (%)	
Metathetic	5.23	
Extracted	8.61	
CrSt ₃ (theoretical)	5.76	
CrSt ₂ (OH) (theoretical)	8.18	
CrSt(OH) ₂ (theoretical)	14.08	

TABLE 2 Weight losses

Temperature range (°C)	Weight loss (%)		
	Metathetic product	Extracted product	
188-275	25.4	25.8	
275-360	19.3	19.8	
360-483	24.8	24.8	
483-end	19.0	18.9	

Fig. 1. TG and DTG curves. (a) Metathetic product; (b) mixture of extracted product and stearic acid.

CONCLUSION

The very close similarity of the TG and DTG curves, as demonstrated by Fig. 1 and Table 2, suggests that the product of the metathetic reaction between sodium stearate and a chromium salt is not chromium tristearate (contaminated with stearic acid) but a mixture of stearic acid and substi-

tuted chromium stearates, CrSt₂(OH) and CrSt(OH)₂. Treatment of the metathetic product with ethanol removes the acid impurity.

It would thus appear that the tristearate of chromium like that of aluminium [6-8] requires special precautions to be taken during its preparation [9], and that the results quoted for previous studies [1-5] on chromium tristearate do not refer to $CrSt_3$ but to mixtures of stearic acid and hydroxy substituted stearates $[CrSt_2(OH)]$ and $CrSt(OH)_2$.

ACKNOWLEDGEMENTS

The authors are indebted to Dr. J.T. Pearson and D.K. Stephenson for their help and cooperation.

REFERENCES

- 1 W.U. Malik and S.I. Ahmad, Kolloid Z. Z. Polym., 234 (1969) 1045.
- 2 W.U. Malik and S.I. Ahmad, J. Am. Oil Chem. Soc., 42 (1965) 451.
- 3 W.U. Malik and S.I. Ahmad, J. Am. Oil Chem. Soc., 42 (1965) 454.
- 4 W.U. Malik, A.K. Jain and O.P. Jhamb, J. Chem. Soc. A, (1971) 1514.
- 5 J.A. Wood and C.P. Rycroft, Colloid. Polym. Sci., 253 (1975) 311.
- 6 A.E. Leger, R.L. Haines, C.E. Hubley, J.C. Hyde and H. Sheffer, Can. J. Chem., 35 (1957) 799.
- 7 R.C. Mehrotra and A.K. Rai, J. Indian Chem. Soc., 39 (1962) 1.
- 8 N. Pilpel, Research (London), 15 (1962) 385.
- 9 A.K. Rai and G.K. Parashar, Thermochim. Acta, 29 (1979) 175.